Disentangling the Information and Forward Guidance Effects of Monetary Policy Announcements

Lars Other

Friedrich Schiller University, Jena and Halle Institute for Economic Research (IWH)

2019

Research Question

What are the effects of monetary policy?

• On financial markets & the real economy

Standard approaches to identification

- Monetary policy shocks orthogonal to the state of the economy (SVAR: Christiano et al., 1999)
- ...or orthogonal to the information set of market participants (High-frequency identification: Gürkaynak et al., 2005)

Research Question

What are the effects of monetary policy?

• On financial markets & the real economy

Standard approaches to identification

- Monetary policy shocks orthogonal to the state of the economy (SVAR: Christiano et al., 1999)
- ...or orthogonal to the information set of market participants (High-frequency identification: Gürkaynak et al., 2005)

Identification problem

 Monetary policy is mostly endogenous and market participants are aware of that ⇒ Fed information effect (Romer and Romer, 2000, Nakamura and Steinsson, 2018)

FOMC on August 9, 2011

Calender-based forward guidance

- Since March 2009: Fed funds rate will remain exceptionally low for an *"extended period"*
- In August 2011: exceptional low levels will remain "at least through mid-2013"

Note: Expected number of quarters until first Fed funds rate hike (Source: Swanson and Williams, 2014)

FOMC on August 9, 2011

Calender-based forward guidance

- Since March 2009: Fed funds rate will remain exceptionally low for an *"extended period"*
- In August 2011: exceptional low levels will remain "at least through mid-2013"

Note: Expected number of quarters until first Fed funds rate hike (Source: Swanson and Williams, 2014)

⇒ Del Negro et al. (2012) and Andrade et al. (2017): expectations about economic prospects worsen rather than improved

This Paper

Reconsidering the identification of monetary policy shocks

- Novel identification strategy to disentangle monetary and non-monetary news ⇒ exploiting the response of the entire yield curve
- Construct instruments for three structural shocks: target shock, forward guidance, and information effect
- Information effect reflects news about the economic prospects and risks to the outlook

This Paper

Reconsidering the identification of monetary policy shocks

- Novel identification strategy to disentangle monetary and non-monetary news ⇒ exploiting the response of the entire yield curve
- Construct instruments for three structural shocks: target shock, forward guidance, and information effect
- Information effect reflects news about the economic prospects and risks to the outlook

Transmission to the real economy

- Investigation of the effects on the term structure using event-study approach
- Local projection to study the dynamic macro effects

Contributions

- **1.** Monetary policy news are confounded with news about nominal risks to the economic prospects
 - \Rightarrow effects on different components of the nominal term structure

Literature

Contributions

- **1.** Monetary policy news are confounded with news about nominal risks to the economic prospects
 - ⇒ effects on different components of the nominal term structure
- **2.** Different dimensions of policy announcement have distinct effects on the term structure
 - ⇒ term premium response important for transmission of monetary policy

Literature

Contributions

- **1.** Monetary policy news are confounded with news about nominal risks to the economic prospects
 - ⇒ effects on different components of the nominal term structure
- **2.** Different dimensions of policy announcement have distinct effects on the term structure
 - ⇒ term premium response important for transmission of monetary policy
- **3.** Once one accounts for information effect, no puzzling responses to monetary policy shocks
 - \Rightarrow news about risk to economic prospects have real effects

Literature

Identification: Problem

Asymmetric Information

- Policy action and central bank communication reveal private information to the public (Romer and Romer, 2000)
- Monetary policy surprise:
 - 1. Exogenous monetary policy shock
 - **2.** Endogenous response to the economic state the public was not (fully) aware of

Identification: Problem

Asymmetric Information

- Policy action and central bank communication reveal private information to the public (Romer and Romer, 2000)
- Monetary policy surprise:
 - 1. Exogenous monetary policy shock
 - **2.** Endogenous response to the economic state the public was not (fully) aware of

Econometricians' perspective

- Observed movements in the term structure on announcement day
- Interest rate movements driven by both monetary policy news and news about economic prospects

Identification: Assumption

Assumption

• Long-run monetary neutrality ⇒ monetary policy announcement do not affect long-run inflation expectations

Identification: Assumption

Assumption

• Long-run monetary neutrality ⇒ monetary policy announcement do not affect long-run inflation expectations

Empirically

⇒ Variations in 5-Year, 5-Year forward breakeven inflation rates are driven by information about economic prospects (risks) but not by monetary policy news

AF16/JK19 BEI rate

Historical Implementation of Forward Guidance

Inflation Targeting

Identification: Data

High-frequency identification: instruments for monetary policy shocks (Kuttner, 2001, Gürkaynak et al., 2005)

- Changes in money market futures rates surrounding FOMC meeting summarize surprise component of the announcement
- Sample period July 1991 September 2017
- Eight asset prices along the yield curve:
 - Current-month and three-month-ahead Federal funds futures
 - Two-, three-, and four-quarter-ahead Eurodollar futures
 - Two-, five-, and ten-year Treasury yields

Identification: Factor model

Factor model: asset price responses are driven by three factors \Rightarrow Swanson (2017)

$$\underbrace{X}_{(T \times n)} = \underbrace{F}_{(T \times 3)} \underbrace{\Lambda}_{(3 \times n)} + \xi$$

• Latent factors *F* estimated as the first three principal components

 \Rightarrow explain 94% of variance of *X*

Three Factors

Identification: Factor model

Factor model: asset price responses are driven by three factors \Rightarrow Swanson (2017)

• Latent factors *F* estimated as the first three principal components

 \Rightarrow explain 94% of variance of X

 Orthogonal rotation matrix U (UU' = I) ⇒ structural interpretation of factors F̃ = FU

Three Factors

Restrictions on rotation matrix U

1. & 2. Forward guidance and target shock do not move 5-Year, 5-Year forward breakeven inflation rates

Identification Loadings

Restrictions on rotation matrix U

- **1. & 2.** Forward guidance and target shock do not move 5-Year, 5-Year forward breakeven inflation rates
 - ⇒ External instrument approach (Mertens and Ravn, 2013): only the information effect is correlated with long-term inflation expectation forwards (sample period: 01/2001 - 06/2008 & 06/2009 - 09/2017)

Restrictions on rotation matrix U

- **1. & 2.** Forward guidance and target shock do not move 5-Year, 5-Year forward breakeven inflation rates
 - ⇒ External instrument approach (Mertens and Ravn, 2013): only the information effect is correlated with long-term inflation expectation forwards (sample period: 01/2001 - 06/2008 & 06/2009 - 09/2017)
 - **3.** Forward guidance does not affect the very short-end of the yield curve

Restrictions on rotation matrix U

- **1. & 2.** Forward guidance and target shock do not move 5-Year, 5-Year forward breakeven inflation rates
 - ⇒ External instrument approach (Mertens and Ravn, 2013): only the information effect is correlated with long-term inflation expectation forwards (sample period: 01/2001 - 06/2008 & 06/2009 - 09/2017)
 - **3.** Forward guidance does not affect the very short-end of the yield curve
 - ⇒ Forward guidance orthogonal to the current policy decision (Gürkaynak et al., 2005)

Identification Loadings

Interpretation of Factors

Three shocks

- **1.** Target shock \Rightarrow exogenous change in policy rate
- **2.** Forward guidance shock \Rightarrow announcement of an exogenous target shock in the future
- **3.** Information effect \Rightarrow news about nominal risks in the future

Interpretation of Factors

Three shocks

- **1.** Target shock \Rightarrow exogenous change in policy rate
- **2.** Forward guidance shock \Rightarrow announcement of an exogenous target shock in the future
- 3. Information effect \Rightarrow news about nominal risks in the future

Information effect

- Higher inflation risk ⇒ nominal bonds become less valuable ⇒ term premium increases
- Important: news about higher inflation is orthogonal to the expected monetary policy path

Event Study

Effects of monetary policy:

- Monetary policy: average expected short-term interest rate vs. term premium? ⇒ Woodford (2012), Filardo and Hoffmann (2014)
- Feroli et al. (2017) and Mishkin (2018): Forward guidance conditioned on observable indicators is more effective than time-contingent/open-end forward guidance

Event Study

Effects of monetary policy:

- Monetary policy: average expected short-term interest rate vs. term premium? ⇒ Woodford (2012), Filardo and Hoffmann (2014)
- Feroli et al. (2017) and Mishkin (2018): Forward guidance conditioned on observable indicators is more effective than time-contingent/open-end forward guidance

Event-study regressions:

$$\Delta i_t^m = \alpha + \beta^{\mathbf{m}} mps_t^i + \epsilon_t$$

Scaling of the monetary policy shocks

- Target shock: current-month Federal funds futures 25 Bp \downarrow
- Forward guidance: one-year-ahead Eurodollar futures 25 Bp \downarrow
- Information effect: ten-year Treasury rate 25 Bp ↑

Effects on Treasury Yields (Adrian et al., 2013)

Expected average level of short-term interest rates

Term premium

Persistence Real Rates Asymmetric Forward Guidance

LP-IV

Instrumental variables local projection (Jordá, 2005, Stock and Watson, 2018)

$$Y_{i,t+h} = \alpha_{i,h} + \gamma_{i,h} W_t + \theta_{i,h} Y_{1,t} + \xi_{i,t+h},$$
(1)

- Variables Y_{i,t}: Policy indicator (FFR, 10-Year-3-Month term spread, or 5-Year nominal term premium), ΔIP, ΔCPI, Moody's Baa spread on 10-Year Treasury, (5-Year Treasury Rate, Consensus Forecasts ...)
- IV: $m_{j,t}$ as instrument for policy indicator $Y_{1,t}$
- Controls W_t : 6 lags of $Y_{i,t}$, 4 PCs from the FRED-MD data set, other shock measures $m_{k,t}$, $k \neq j$, and 3 leads of $m_{j,t}$
- Monthly data, July 1991 September 2017

LP-IV: Target shock (F=35.2)

Note: Figures show responses to an expansionary monetary policy shock that lowers the Federal Funds Rate by 25 Bp on impact. 68% and 95% confidence intervals; sample period: 07/1991 - 09/2017 Additional Variables

LP-IV: Forward guidance (F=11.1)

16/18

Note: Figures show responses to an expansionary forward guidance shock that lowers the term spread by 25 Bp on impact. 68% and 95% confidence intervals; sample period: 07/1991 - 09/2017 Additional Variables

IRFs: Information effect (F=10.5)

Note: Figures show responses to an information shock that raises the term premium by 25 Bp on impact. 68% and 95% confidence intervals; sample period: 07/1991 - 09/2017

Conclusion

Disentangling the effects of monetary policy announcements ⇒ long-term inflation rate forwards

- Distinct effects on the term structure
 - Information effect reflects nominal risks signaled by announcement ⇒ moves term premium
 - Forward guidance reduces term premium
- Reasonable dynamic effects on macro variables
 - Monetary policy has a significant impact on the real economy
 - Information effect lowers actual and expected output
 ⇒ not accounting for non-monetary policy news may lead
 to quantity puzzle

Thank you.

Literature I

Abrahams, Adrian, Crump, Moench, and Yu (2016): "Decomposing real and nominal yield curves," *Journal of Monetary Economics*, 84, 182 - 200.

Adrian, Crump, and Moench (2013): "Pricing the Term Structure with Linear Regressions," *Journal of Financial Economics*, 110, 110 - 138.

Andrade and Ferroni (2016): "Delphic and Odyssean monetary policy shocks: Evidence from the euro-area," Manuscript, University of Surrey.

Andrade, Gaballo, Mengus, and Mojon (2017): "Forward Guidance and Heterogeneous Beliefs," Working Paper, Banque de France.

Bauer and Rudebusch (2014): "The Signaling Channel for Federal Reserve Bond Purchases," *International Journal of Central Banking*, 10, 233 – 289.

Campbell, Evans, Fisher, and Justiniano (2012): "Macroeconomic Effects of Federal Reserve Forward Guidance," *Brookings Papers on Economic Activity*, 43, 1 – 80.

Campbell, Ferroni, Fisher, and Melosi (2019): "The Limits of Forward Guidance," CEPR Discussion Paper No. DP13612.

Literature II

Campbell, Fisher, Justiniano, and Melosi (2016): "Forward Guidance and Macroeconomic Outcomes Since the Financial Crisis," NBER Macroeconomics Annual, 31, 283 – 357.

Christiano, Eichenbaum, and Evans (1999): "Monetary policy shocks: What have we learned and to what end?" in Handbook of Macroeconomics, ed. by Taylor and Woodford, Elsevier B.V., vol. 1A, chap. 2, 65 - 148.

Cieslak and Schrimpf (2019): "Non-monetary news in central bank communication," *Journal of International Economics*, 118, 293 - 315.

Debortoli and Lakdawala (2016): "How Credible Is the Federal Reserve? A Structural Estimation of Policy Re-optimizations," *American Economic Journal: Macroeconomics*, 8(3), 42 - 76.

Del Negro, Giannoni, and Patterson (2015): "The Forward Guidance Puzzle," Federal Reserve Bank of New York, Staff Report, No. 574.

Feroli, Greenlaw, Hooper, Mishkin, and Sufi (2017): "Language after liftoff: Fed communication away from the zero lower bound," *Research in Economics*, 71, 452 - 90.

Gertler and Karadi (2015): "Monetary Policy Surprises, Credit Costs, and Economic Activity," *American Economic Journal: Macroeconomics*, 7, 44 – 76.

Literature III

Filardo and Hoffmann (2014): "Forward Guidance at the Zero Lower Bound?" *BIS Quarterly Review*, 37 - 53.

Gürkaynak, Sack, and Swanson (2005): "Do Actions Speak Louder Than Words? The Response of Asset Prices to Monetary Policy Actions and Statements," *International Journal of Central Banking*, 1, 55 – 93.

Gürkaynak, Levin, and Swanson (2010): "Does Inflation Targeting Anchor Long-Run Inflation Expectations? Evidence from the U.S., UK, and Sweden," *Journal of the European Economic Association*, 8(6), 1208 - 42.

Hanson and Stein (2015): "Monetary Policy and Long-Term Real Rates," *Journal of Financial Economics*, 115, 429 – 448.

Kuttner (2001): "Monetary policy surprises and interest rates: Evidence from the Fed funds futures market," *Journal of Monetary Economics*, 47, 523 – 44.

Jarociński and Karadi (2019): "Deconstructing monetary policy surprises: the role of information shocks," American Economic Journal: Macroeconomics, forthcoming.

Mertens and Ravn (2013): "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States," *American Economic Review*, 103, 1212 – 47.

Literature IV

Melosi (2017): "Signalling Effects of Monetary Policy," *The Review of Economic Studies*, 84, 853 – 884.

Miranda-Agrippino and Ricco (2017): "The Transmission of Monetary Policy Shocks," Bank of England Working Papers, No. 657.

Mishkin (2018): "Improving the use of discretion in monetary policy," *International Finance*, 21, 224 - 38.

Nakamura and Steinsson (2018): "High Frequency Identification of Monetary Non-Neutrality: The Information Effect," *Quarterly Journal of Economics*, 133, 1283 – 330.

Romer and Romer (2000): "Federal Reserve Information and the Behavior of Interest Rates," *American Economic Review*, 90, 429 – 57.

Stock and Watson (2018): "Identification and Estimation of Dynamic Causal Effects in Macroeconomics Using External Instruments," *The Economic Journal*, 128, 917 – 48.

Swanson (2017): "Measuring the Effects of Federal Reserve Forward Guidance and Asset Purchases on Financial Markets," Manuscript, University of California, Irvine.

Literature V

Swanson, Williams (2014): "Measuring the Effect of the Zero Lower Bound on Medium- and Longer-Term Interest Rates," *American Economic Review*, 104(10), 3154 - 85.

Woodford (2012): "Methods of Policy Accommodations at the Interest-Rate Lower Bound," Proceedings - Economic Policy Symposium - Jackson Hole. Appendix

Related Literature

1. High-frequency identification of monetary policy shocks

Kuttner (2001), Gürkaynak et al. (2005), Gertler and Karadi (2015)

- \Rightarrow Interest rate surprises reflect more than MP shocks
- 2. Central bank information effect

Campbell et al. (2012, 2016), Miranda-Agrippino and Ricco (2018) use survey data to control for private information of central bank

- Asset price data as Jarociński and Karadi (2019) ⇒ entire yield curve and separate forward guidance
- Information effect alters bond risk premia: Hanson and Stein (2015), Cieslak and Schrimpf (2019) ⇒ macro effects

3. Models of the information channel

Nakamura and Steinsson (2018), Melosi (2017)

Identifying Assumption: Literature

Identifying assumption:

• Monetary policy does not affect long-run inflation expectations

Jarociński and Karadi (2019)

- Co-movement between interest rates and stock prices: negative for monetary policy shocks and positive for information effect
 - ⇒ No differentiation between target shock and monetary policy path
 - \Rightarrow Stocks are driven by fundamentals

Identifying Assumption: Literature

Identifying assumption:

• Monetary policy does not affect long-run inflation expectations

Jarociński and Karadi (2019)

- Co-movement between interest rates and stock prices: negative for monetary policy shocks and positive for information effect
 - ⇒ No differentiation between target shock and monetary policy path
 - \Rightarrow Stocks are driven by fundamentals

Andrade and Ferroni (2016)

- Comovement between interest rates and medium run inflation rates: negative for monetary policy shocks and positive for information effect
 - \Rightarrow Market based measures of inflation *compensation* \Rightarrow expected inflation and inflation risk premia
 - ⇒ Announcements may signal both demand and supply shocks

back

Standard VAR MP shocks

Table: Variance of Monetary Policy Shocks explained by Factors

	Exogenous innovation to the policy rate					
1^{st} Factor	0.26 *** (0.07)	0.26 *** (0.06)	0.26 *** (0.06)			
2 nd Factor		-0.15 (0.10)	-0.16 ** (0.06)			
3 rd Factor			0.31 *** (0.07)			
Observations	216	216	216			
R ²	0.06	0.08	0.17			
Adjusted R ²	0.06	0.07	0.16			
F Statistic	14.36	9.61	14.34			

Note: Monetary policy innovation computed from a SVAR including industrial production, producer prices, unemployment, Federal Funds Rate/Shadow Rate (Wu and Xia, 2016), Moody's credit spread indicator (in that order; Cholesky decomposition). Constants are not presented for brevity. Robust standard errors reported in brackets, * p < 0.1, ** p < 0.05, *** p < 0.01. back

Institutional Feature of IT Central Banks

Forward guidance as commitment to a policy path?

- Theory: yes (Eggertsson and Woodford, 2003)
- Practice: central banks provide a conditional forecast of the path of its policy rate

Institutional Feature of IT Central Banks

Forward guidance as commitment to a policy path?

- Theory: yes (Eggertsson and Woodford, 2003)
- Practice: central banks provide a conditional forecast of the path of its policy rate

Inflation targeting central banks

- Central banks have an (implicit) inflation target ⇒ anchor for market participants' long-run inflation expectations
- 5-Year, 5-Year forward breakeven inflation rate common indicator in the literature (Nautz et al. 2017)

back

Abrahams et al. (2016)

Note: Decomposition of BEI rates into model-implied expected inflation, the inflation risk premium and the liquidity component. (Source: Abrahams et al., 2016)

Identification of the instruments I

Information effect factor

Partitioning of U

$$f_{t} = U\tilde{f}_{t} = U_{12} \begin{bmatrix} \tilde{f}_{1,t} \\ \tilde{f}_{2,t} \end{bmatrix} + U_{3}\tilde{f}_{3,t}^{*}$$

External instrument variable m_t : change in 5-Year, 5-Year forward breakeven inflation rate on announcement days

$$\mathbb{E}\left(m_t \begin{bmatrix} \tilde{f}_{1,t} \\ \tilde{f}_{2,t} \end{bmatrix}'\right) = 0$$
$$\mathbb{E}(m_t \tilde{f}_{3,t}^*) = \phi$$

Thus:

$$\mathbb{E}(m_t f_t) = \mathbb{E}\left(m_t (U_{12}\begin{bmatrix}\tilde{f}_{1,t}\\\tilde{f}_{2,t}\end{bmatrix} + U_3 \tilde{f}_{3,t}^*)'\right)$$
$$= U_{12} \mathbb{E}\left(m_t \begin{bmatrix}\tilde{f}_{1,t}\\\tilde{f}_{2,t}\end{bmatrix}'\right) + U_3 \mathbb{E}(m_t \tilde{f}_{3,t}^*)$$
$$= U_3 \phi$$

Identification of the instruments II

Forward guidance factor

- Should not load into the current-month Federal funds futures rate
- Should be orthogonal to the information effect factor

$$\begin{bmatrix} \Lambda_1' \\ U_3' \end{bmatrix} U_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Target factor

• Should be orthogonal to the other two factors

$$\begin{bmatrix} U_2' \\ U_3' \end{bmatrix} U_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Rotation matrix U

- All column vectors rescaled to have a unit length (preserves unit variance normalization of *F*)
- *U* uniquely solved up to a sign convention

back

Estimated factors

	Target Factor	Forward Guidance Factor	Information Effect Factor
FF1	-1.00	0.00	0.00
FF2	-0.61	-0.57	-0.39
EDF2	-0.64	-0.72	-0.15
EDF3	-0.53	-0.80	-0.12
EDF4	-0.44	-0.87	-0.04
2y-TR	-0.46	-0.83	0.09
5y-TR	-0.29	-0.86	0.39
10y-TR	-0.16	-0.81	0.52

Table: Estimated Factor Loadings (Sample Period: 1991-2017)

Note: FF1 and FF2 denote the current-month and three-month-ahead Federal funds futures contracts, EDF2 to EDF4 denote the two-, three-, and four-quarter-ahead Eurodollar futures contracts, and the two-, five-, and ten-year Treasury yields are denoted as 2y-TR to 10y-TR.

Estimated factors

	Target			Forward			Information	
	shock			guidance			effect	
FF1	-1.00^{***}	(0.00)	-	-0.00	(0.00)		0.00	(0.00)
FF2	-0.63^{***}	(0.04)	-	-0.46^{***}	(0.03)		-0.39^{***}	(0.04)
EDF2	-0.71^{***}	(0.03)	-	-0.62^{***}	(0.03)		-0.16^{***}	(0.03)
EDF3	-0.66^{***}	(0.02)	-	-0.77^{***}	(0.02)		-0.15^{***}	(0.03)
EDF4	-0.56^{***}	(0.02)	-	-0.87^{***}	(0.02)		-0.05^{**}	(0.02)
2y-TR	-0.48^{***}	(0.03)	-	-0.67^{***}	(0.03)		0.09^{***}	(0.03)
5y-TR	-0.33^{***}	(0.01)	-	-0.78^{***}	(0.01)		0.44^{***}	(0.02)
10y-TR	-0.16^{***}	(0.02)	-	-0.66^{***}	(0.02)		0.52^{***}	(0.03)

Table: Estimated Factor Loadings: Regression

Note: FF1 and FF2 denote the current-month and three-month-ahead Federal funds futures contracts, EDF2 to EDF4 denote the two-, three-, and four-quarter-ahead Eurodollar futures contracts, and the two-, five-, and ten-year Treasury yields are denoted as 2y-TR to 10y-TR.

ck

Identification: LSAP?

Transmission channel

- Woodford (2012) and Bauer and Rudebusch (2014): signaling channel of asset purchases
- LSAP and forward guidance may interfere empirically ⇒ subsumed as forward guidance

Identification strategy

• Approach could be adjusted to explicitly differentiate between LSAP and forward guidance ⇒ Swanson (2017) and Altavilla et al. (2019)

back

Private Information of the Fed

$$mps_t^i = \alpha + \sum_{h=0}^{3} \beta_h (\hat{X}_{t+h|t}^{GB} - \hat{X}_{t+h|t}^{SPF}) + \epsilon_t$$

	Target		Forward		Information	
\hat{X}	shock		guidance		effect	
Δy_t	-0 .14*	(0.08)	-0 .18*	(0.11)	0.17^{*}	(0.10)
Δy_{t+1}	-0.05	(0.13)	0.06	(0.20)	-0.43***	(0.16)
Δy_{t+2}	-0.16	(0.16)	-0.08	(0.24)	-0.08	(0.15)
Δy_{t+3}	0.15	(0.15)	-0.16	(0.22)	0.31	(0.19)
π_t	-0.06	(0.08)	0.02	(0.15)	-0.08	(0.17)
π_{t+1}	0.21	(0.16)	-0.05	(0.17)	0.07	(0.15)
π_{t+2}	0.01	(0.21)	-0.05	(0.30)	-0.13	(0.32)
π_{t+3}	0.06	(0.17)	-0.10	(0.29)	-0.63*	(0.38)
u_t	-0.21	(0.35)	0.26	(0.47)	1.17^{**}	(0.51)
R^2	0.07		0.07		0.18	
F	1.33		1.24		3.94***	

Note: Sample period: 04/1992 - 12/2012. Robust standard errors

back 19/30

Non-linear Effects on Treasury Yields

Test for non-linearities:

$$\Delta i_t^m = \alpha + \beta_1^{\mathbf{m}} I_t mps_t^i + \beta_2^{\mathbf{m}} (1 - I_t) mps_t^i + \epsilon_t$$

- Forward guidance reduces uncertainty about the future policy path ⇒ term premium decreases
- Effects of forward guidance on term premia are higher at the zero lower bound

TIPS Term Structure (Gürkaynak et al. 2010)

Real forward rates

Asymmetric responses

Notes: Estimated coefficients and 95% robust confidence intervals (bars) from regressions of daily changes in real forward rates across different maturities on the identified shocks. Sample period: 01/2004 - 09/2017 Persistence back

Open-ended vs. Contingent Forward Guidance

Forward Guidance Types following Ehrmann et al. (2019)

1. Open-ended guidance: FOMC 12/2008 - 06/2011 and 03/2014 - 09/2017

[...] the Committee anticipates that weak economic conditions are likely to warrant exceptionally low levels of the federal funds rate **for some time**.

Open-ended vs. Contingent Forward Guidance

Forward Guidance Types following Ehrmann et al. (2019)

1. Open-ended guidance: FOMC 12/2008 - 06/2011 and 03/2014 - 09/2017

[...] the Committee anticipates that weak economic conditions are likely to warrant exceptionally low levels of the federal funds rate **for some time**.

2. Time-contingent guidance: FOMC 08/2011 - 10/2012

The Committee currently anticipates that economic conditions [...] are likely to warrant exceptionally low levels for the federal funds rate at *least through mid-2013*.

Open-ended vs. Contingent Forward Guidance

Forward Guidance Types following Ehrmann et al. (2019)

1. Open-ended guidance: FOMC 12/2008 - 06/2011 and 03/2014 - 09/2017

[...] the Committee anticipates that weak economic conditions are likely to warrant exceptionally low levels of the federal funds rate **for some time**.

2. Time-contingent guidance: FOMC 08/2011 - 10/2012

The Committee currently anticipates that economic conditions [...] are likely to warrant exceptionally low levels for the federal funds rate **at** *least through mid-2013*.

3. State-contingent guidance: FOMC 12/2012 - 01/2014

[...] the Committee [...] currently anticipates that this exceptionally low range for the federal funds rate will be appropriate at least as long as the **unemployment rate remains above 6-1/2 percent**, inflation between one and two years ahead is projected to be no more than a half percentage point above the Committee's 2 percent long-run goal, and **longer-term inflation expectations continue to be well anchored**.

Forward Guidance

Expected average level of short-term interest rates

back 23/30

Nominal Term Structure - Persistence

Target Shock

Notes: Figures show estimated coefficients and 95% robust confidence intervals (bars) from regressions of daily changes in the components of nominal yields across different maturities on the identified shocks.

Nominal Term Structure - Persistence

Forward Guidance

Notes: Figures show estimated coefficients and 95% robust confidence intervals (bars) from regressions of daily changes in the components of nominal yields across different maturities on the identified shocks.

Nominal Term Structure - Persistence

Information Effect

Notes: Figures show estimated coefficients and 95% robust confidence intervals (bars) from regressions of daily changes in the components of nominal yields across different maturities on the identified shocks.

Real Term Structure - Persistence

Forward Guidance

back 27/30

LP-IV: Target shock

Note: Figures show responses to an expansionary monetary policy shock that decreases the FFR rate by 25 Bp on impact. 68% and 95% confidence intervals; sample period: 07/1991 - 09/2017 back

28/30

LP-IV: Forward guidance

Note: Figures show responses to an expansionary forward guidance shock that lowers the term spread by 25 Bp on impact. 68% and 95% confidence intervals; sample period: 07/1991 - 09/2017 back

ack 29/30

LP-IV: Information Shock

Note: Figures show responses to an expansionary forward guidance shock that lowers the term spread by 25 Bp on impact. 68% and 95% confidence intervals; sample period: 07/1991 - 09/2017 back

30/30